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ABSTRACT
The IoT ecosystem is an intricate network of stakeholders
(e.g., developers, advertising networks, platform operators)
that often exploit data-driven business models. The ability of
smart home platforms and devices to interact and exchange
personal user data with each other opens potential privacy
risks. But proposed black-box approaches to audit IoT plat-
forms lack techniques to automatically and wholistically
study their behaviour in rich execution environments where
other devices and applications operate. This thesis proposes
ImposTer, a cost-effective yet extensible privacy and secu-
rity analysis framework for exhaustively studying the IoT
ecosystem in conjunction with other devices. ImposTer uti-
lizes a suite of analysis techniques to automatically capture
and model the horizontal interaction across multiple devices
in a consumer household. To this extent, along with multiple
smart home devices, traffic interception techniques, and net-
work protocol honeypots, I introduce a highly instrumented
smart TV to empirically characterize inter-device commu-
nication. Using a dataset of 415 Smart TV applications, we
expose information leakage and characterize interconnected
nature of the smart home ecosystem, including the pres-
ence and interaction of potentially intrusive advertising and
tracking services.

1 INTRODUCTION
The growing market of smart home technologies has evolved
beyond basic domotic functionalities to systems such as per-
sonal assistants. Despite their benefits, IoT devices are sus-
ceptible to a myriad of privacy risks. With the integration
of rich sensors such as GPS and microphone along with per-
sistent Internet connectivity, these devices are powerhouses
that could learn and expose sensitive information of not only
about the environment but also about their users [17, 18, 20].
Internet-enabled Smart TVs are one such example which
contains many features powered by sensors (e.g., in-built
camera) and tracking technologies inherited from smart-
phone platforms that would not be found on a conventional
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Figure 1: Our smart home emulated setup

TVs. This technical development entails potential privacy
and security risks [27]. Moreover, certain features of these
devices can only be activated based on the data captured
from the surrounding environment.

Additionally, many of these devices can interact with prod-
ucts from different manufacturers. To encourage interopera-
ble vendor compatibility, many IoT vendors build their de-
vices based on prominent IoT platforms such as Android [21],
SmartThings [29], or HomeKit [26]. These platforms enable
IoT devices (even applications in these devices) to seamlessly
communicate with neighbouring devices in a home network.
However, prior research commonly abstracts IoT products
as a self-contained monolithic entity that only interacts with
the cloud, thus neglecting multitude of actors and dynamics
present in the ecosystem. For example, it is a common prac-
tice in software engineering to integrate third-party services
in order to speed up the development cycle. In several plat-
forms like Android, iOS and most smart TVs, these libraries
share the same privileges as the host application. Addition-
ally, smart home devices are highly inter-connected systems
capable of inter-device communication through platform-
specific APIs. This potential hyper-connectivity can have
negative consequences for users’ privacy by enabling data



leaks between devices to the cloud without user awareness.
Unfortunately, manual inspection of IoT devices requires re-
searchers to hack functionalities deep-rooted at the hardware
level, limiting their scalability.

New regulations such as General Data Protection Regula-
tion directive (GDPR) or California Consumer Privacy Act
(CCPA) are meant to protect user’s privacy, by mandating
software products that collect personal data to portray a pri-
vacy policy in which they clearly explain data collection pur-
poses, and prohibiting the collection of personal data without
informed user consent. However, smart home consumer pri-
vacy are still at risk, as illustrated by the FTC settlement with
Vizio for violating user privacy and collecting data without
consent in 2017 [19]. Unfortunately, regulators lack tools
for exhaustively and automatically auditing smart platforms.
Prior work has reflected on the inter-dependencies that ex-
ist between smart platforms, and they leverage companion
apps [59] or static analysis techniques [34, 41] to infer the
privacy implication of IoT devices. Unfortunately, prior state
of the art dynamic approaches falls short because they are
either vendor [49, 58] or device-specific [38]. Consequently,
the inter-connected nature of IoT devices (also within apps)
and PII dissemination is largely understudied.

I propose a novel automated and extensible privacy anal-
ysis framework ImposTer for smart home infrastructures
to enhance IoT platform transparency. The framework is
composed by multiple elements that facilitate the discovery
of potential privacy-intrusive behaviours across multiple
platforms when combined with static and dynamic analysis
techniques. The framework component includes 1) a static
analysis provides insights regarding various third parties
involved, resources requested by an app, code signatures,
unique URLs and usage of network interfaces. 2) Dynamic
analysis helps gathering insights during runtime and moni-
tor network activity. 3) In addition, this framework includes
a network honeypot that automatically collects and models
behavioural patterns of IoT devices and applications. Fur-
thermore, proprietary IoT devices such as popular smart
home assistants and smart speakers are also introduced in
my framework to passively capture their interactions. 4) Ad-
ditionally, I introduce a heavily instrumented Smart TV to
the framework, capable of monitoring apps’ behaviour at the
system and network level, including a proxy for intercepting
encrypted traffic.

To evaluate my framework, I collect an app corpus of 415
TV apps by crawling the official Google Play Store. Then, I
automatically interact with these apps on the Smart TV to
simulate human behaviour through a "smart" UI Exerciser
developed in-house. ImposTer extends the state of the art
with my vendor-agnostic framework to characterize the en-
tangled IoT infrastructure and the platforms’ interconnected

nature to audit privacy compliance by combining various
monitoring techniques.
With these instrumentation, my main findings are the

following:
• Application of ImposTer on smart TV apps and em-
bedded third-party libraries reveals PII dissemination
through trackable information such as Device ID or
serial number.

• Frequent communication in the form of device scans
has been observed among the incorporated IoT devices.

The framework - ImposTer presented in this thesis is a
preliminary working prototype of a new approach to model
IoT behaviors and their risks empirically. The framework
will extend during my PhD thesis under the supervision of
Dr. Narseo Vallina, as discussed in Section 6.1.

2 BACKGROUND
This section describes the most prominent Smart Home and
Smart TV platforms. I describe prior research efforts that
focused on studying their privacy and security risks empiri-
cally.

2.1 Smart home systems
Figure 1 represents a common smart home set-up, includ-
ing TV streaming services, smart assistants, thermostats and
light bulbs. A unique feature of these devices is their capa-
bility to be controlled by other devices in the environment
(e.g., voice commands from smart assistants). Commercially
available smart home assistants act as a hub such as Smart
Things [29], HomePod [26], providing a centralized control
over devices from different vendors.
Home assistant Amazon and Google are two of the most
well-known competitors in the market for virtual assistants.
For example, Amazon Alexa and Google Home are non-
headed devices without conventional I/O interfaces (such
as a screen or a USB port). To interact with these virtual
personal assistant devices, users use wake-words such as
"Alexa" or "Hey Google". Notably, home assistants enrich
their capabilities by introducing skill by Amazon or action
by Google which are like apps but for these platforms. De-
spite the convenient features, there is an increasing concern
of privacy and security risks involving phishing attacks or
PII dissemination [33, 36–38, 45, 55]. More recently, Giese
et al. [42] studies Amazon Echo Dot in isolation to reveal
that, Echo dot retain private information such as user profile,
WiFi credentials and much more even after a factory reset.
Smart Hubs enable connected devices to communicate with
their companion app, the cloud back-end and even other de-
vices. Samsung SmartThings [29], Google Nest [12], Apple
HomeKit [26] are some of the smart hubs available in the
market today. Using the companion apps users can interact
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with the hub, and perform actions such as installing third-
party apps. Smart hubs have also received attention from
researchers in the past for their privacy intrusiveness. Re-
cently, Babun et al. introduces IoTWatcH [34] a dynamic
analysis tool for exposing privacy violations in Samsung’s
SmartThings IoT apps. Similarly, Fernandes et al. [41] discov-
ers security flaws of Samsung SmartThings IoT ecosystem
by studying 499 apps.

2.2 Smart TV ecosystem
Smart TVs are one of the most popular smart home device.
It allows consumers to stream content online, browse the
Internet and even play games. In today’s consumer market,
Android based smart TV platform dominate with several
popular vendors such as Sony, NVIDIA and Philips. Addi-
tionally, vendors such as Amazon introduce smart TVs with
their own modified version of Android TV, the Fire TV. Due
to the similarities within the Android platform for phones
and the TVs, consumers get to install apps for their smart
TV. However, the distribution of these apps is diverse with
custom store operated by stakeholders such as Amazon. This
third-party distribution model raises potential privacy risks
(e.g., distribution of potentially harmful apps) due to the lim-
ited vetting capabilities. Therefore, many researchers have
explored the privacy compliance of these devices. Both Var-
marken et al. [58] and Moghaddam et al. [49] explores the
tracking and Advertising ecosystem on both Amazon Fire
TV [2] and Roku TV [15] to find that a large number of
TV apps expose PII to third party domains. Interestingly,
Moghaddam et al., reveals Smart TVs leak user viewing habit
based on through their best-effort TLS interception.
Android TV apps Android based Smart TV apps are similar
to mobile apps with some minor additional parameters set
in the APK manifest by the developer to run on a smart TV.
The apps for TV must declare a specific TV launcher activ-
ity. In contrast to mobile apps, TV apps must not declare
unsupported hardware such as a touchscreen in the man-
ifest. Finally, Android TV apps can opt to add support for
Leanback library [11]. Leanback library is a part of Android
development kit which provides user interface (UI) templates
and navigation support that are exclusively for Android TV.

2.3 Holistic approaches
Many smart home devices implement APIs to enable integra-
tion with other software and platforms over the network. For
instance, current platforms such as iOS and Android allow
devices to be connected at all times. Apple iOS allows users
to scan for nearby device with Find my app [6]. Find my
app crowdsources location data from nearby devices without
requiring any network connectivity. Similarly, Apple’s new
Airtags [5] uses similar technology to crowdsourced location

data based on ARP scans. These techniques are not limited
to smartphones or location tracking gadgets such as Airtags.
Apple provides similar functionalities for the app running in
their smart TV OS to scan for nearby devices [24, 28]. Anal-
ogously, Spotify Connect [30] feature allows the Spotify app
to browse for nearby devices. Google Chromecast devices
also scan for nearby compatible devices to initiate a pairing
session [31].
Prior research has been successful in revealing security

and privacy loopholes within the IoT ecosystem. Prior tools
proposed by researchers only explore certain vantage points
(e.g., companion apps or network traffic) to answer IoT de-
vice behaviour [38, 54, 55, 57, 59]. To perform a complete
characterization of smart home environment while opening
new avenues for inferring platform and device behaviours,
we require to take in account various components (i.e., de-
vices, platformAPIs, companion apps etc.) collectively within
the system - not just one. Therefore, in comparison to the
state of the art, my work introduces a unified vendor agnos-
tic methodology utilizing both the device and companion
apps capable of characterizing smart home behaviours. The
methodologies exposed by my framework ImposTer could
be utilized to understand data flow and private data dissemi-
nation within the IoT black box as discussed next.

3 METHODOLOGY

External 
stimulation

IoT devices or 
apps

Device characterisation engine

Transparency and Privacy compliance

Static Analysis Dynamic Analysis

Third-Party 
SDKs

Permission 
Analysis

Network 
flows

Runtime 
behaviours

Figure 2: ImposTer Architecture, highlighting system
components and the hybrid analysis approach respon-
sible for auditing privacy compliance of IoT devices

ImposTer is a new framework designed to characterize the
smart home IoT ecosystem to determine potential privacy-
intrusive and harmful behaviours as illustrated in Figure
2.
Static and dynamic analysis methods present limitations

when used separately [53]. Static analysis signals are often
prone to false positives and can fail due to obfuscation meth-
ods. Additionally, applicability of static analysis is limited in
case of certain IoT devices and platforms. For instance, all
Amazon Alexa skills are hosted in the cloud and the code
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is dynamically loaded [39]. Static analysis techniques rely
on studying the software’s binary code, and thus have no
visibility into dynamically loaded code. Moreover, the use
of static analysis alone generally fails to contextualize the
results into meaningful behaviours e.g., understanding a po-
tential privacy violation. Although dynamic analysis allows
us to audit the runtime behaviour of an IoT device, IoT re-
search with dynamic analysis techniques heavily rely on
hacky hardware based black-box testing [42] and therefore,
is not scalable for understanding and characterizing smart
home devices at scale. In the light of these limitations, I ex-
plore new techniques that combine both existing static and
dynamic analysis tools to extract a wider and more complete
set of behaviors. I extended the tools with new approaches as
discussed in the following section to increase their coverage,
scalability, and visibility of the analyses.

3.1 Static preprocessor
I perform static analysis on Android based IoT apps, to gather
signals that can be retrieved without having to execute it.
I extract essential characteristics such as manifest informa-
tion, unique strings (including URLs), code-signatures and
network interfaces which are immune to obfuscation meth-
ods.
Permission Analysis Using static analysis, I investigate
the use of Android app permissions to study what type of
resources and data smart home apps request access to. In
cases where sensitive resources are requested by an Android
app, I study whether any such data is sent over the Internet
or not. Using my suite of custom tools, I parse the Android
Manifest [4] to collect invasive and dangerous permissions
(e.g., User location) requested by an app.
Third-Party services and libraries Also common know
as Third-party SDK in mobile platforms, share the same priv-
ileges as of their host app, as discussed previously. Thus,
SDKs are also capable of collecting and transmitting sen-
sitive data. I identify third-party libraries embedded in an
app using a suite of pre-existing static analysis tools such as
LibRadar [48] and Exodus list [10]. Powered together with
custom scripts based on Androguard [3], dexdump [9], and
Baksmali [7] to parse an APK to collect information such as
unique URLs or code-signatures, my static analysis pipeline
is capable of extracting third-party SDK information of IoT
apps without running them. I leverage LibRadar’s classifi-
cation data to shed some light on the relevant stakeholder
involved in the smart home ecosystem as well.

3.2 Dynamic Analysis
When possible, ImposTer is capable of analysing dynami-
cally the behaviour of any given IoT device introduced to

the environment. However, effective dynamic analysis re-
quire granular instrumentation framework to facilitate the
automated execution with external simulation to produce in-
teresting behaviours. Since IoT devices are generally closed
and proprietary in nature, building a scalable framework
capable of instrumenting these devices is challenging. To
overcome this limitation, ImposTer complements runtime
execution with network-level monitors to infer potential
devices and behaviors of other devices hosted in the same
network.

3.3 Runtime Analysis
To facilitate runtime level monitoring, ImposTer supports
low-level instrumentation of two smart TV platforms.
(1) Instrumented Android TV I build a universal Android
TV on a Raspberry Pi 4 which helps to carry out experiments
on apps meant for the TVs and model a universal behaviour
of Smart TV apps. I implemented the port of Android TV to
Raspberry Pi based on a pre-existing [23] work. After suc-
cessfully porting Android TV for Raspberry Pi, I modified
Android Open Source Project (AOSP) that corresponds to
Android 11 for TV to monitor app execution based on prior
research [53, 60, 61]. My instrumentation also allows us to
create interactions and model behaviours among IoT devices
within the home network. Which is otherwise, impossible to
observe without instrumentation capabilites. The instrumen-
tation allows us to comprehensively monitor the behaviour
of each app at the Android-framework and network traffic
levels.
(2) Amazon Fire TV I introduce a Fire TV to our framework.
Fire TV by default runs a modified and proprietary version
of Android. However, due to the customization added by
Amazon on Fire OS, common black-box testing techniques
would not cover the complete device behaviour. Additionally,
since Fire OS is proprietary, source-code instrumentation
is not possible. Therefore to enable instrumentation, I rely
on Frida [25], a well-known dynamic code instrumentation
toolkit to perform dynamic analysis. I implemented custom
scripts using Frida which enables the collection of detailed
runtime and network logs by monitoring Android API for
any smart Fire TV app. My approach hooks into various
networking and runtime modules using Frida without in-
terfering with the operations of the host system and other
co-located apps. However, to enable Frida, an Android device
must be rooted. Fire TV does not facilitate rooting capabli-
ties. However, it is still possible to hook via Frida, but has it
limitation while testing apps at scale. In addition to errors
that my instrumentation could have introduced, it is also
well known that hooking more than a few hundred functions
using Frida causes the system to be unstable, resulting in
frequent crashes [51]. Anyhow, regardless of the obfuscation
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techniques or anti-testing methods [47] apps use to disrupt
static analysis, no app can avoid the instrumentation im-
plemented on both the TVs, since it executes in the system
space of the Android framework.
Companion appsMost IoT devices come with a companion
app as their counterpart. They are mobile apps meant for
interacting with the IoT device. In my case, to interact with
non-headed IoT devices I make use of their companion apps. I
run the companion Android apps on Google Pixel 3a running
a highly instrumented Android 9, provided by AppCensus
for research purposes [1]. This allows to capture smart home
device and platform behaviour from their companion app
point of view. Thus increasing the visibility of my framework
to advocate better for privacy leaks. The instrumentation
include comprehensive monitoring hooks at kernel, Android-
framework, and network traffic levels capable of intercepting
traffic and public API usage and calls. I manually, install,
setup and interact with the IoT devices in the dataset using
the companion apps.

Table 1: Prominent protocols implemented in the hon-
eypot

Protocol Port

UPnP 1900, 5000
HTTP 80
HTTPS 443
mDNS 5353
FTP 21
SMB 139, 445
Telnet 23
IPP 631

3.4 Network-level Monitoring
I facilitate network monitoring from various vantage points
to receive a birds-eye view of the device behaviour. My frame-
work emulates a regular home network environment using a
custom access point build with a Raspberry Pi 4. IoT devices
are connected to this access point and is placed behind a NAT
setup. To intercept all network traffic, I deployed a transpar-
ent proxy server using mitmproxy [13] to record plain-text
network flows. However, IoT devices are typically closed
and proprietary, making it difficult to intercept encrypted
traffic because we cannot install root certificates in order to
monitor HTTPS traffic. In such cases, I decide to fall back to
capture only encrypted traffic. Whereas, for instrumentable
devices such as my custom Android TV, I installed mitm-
proxy’s certificate into the system store to record plain-text
traffic. Furthermore, to observe the network transmissions

from the custom Android TV I build, I instrumented the rel-
evant Java network libraries in AOSP (discussed in-detail in
the following section) to improve visibility of the encrypted
traffic and to have granular information of the network-level
behaviour.
Honeypot Traditionally, honeypots have been used as de-
coys to mimic real devices on a network and help researchers
understand the threat dynamics [44]. Ordinarily honeypots
are used to study attacks, but in my case, I used the honeypot
to opportunistically capture inter-device IoT communication
and characterize privacy risks associated with IoT platforms
by emulating any smart home device. Protocols implemented
within the honeypot will stimulate unknown behaviours,
which otherwise are missed out. Therefore, my honeypot im-
plementation provides a high spectrum of visibility towards
security and privacy risks of the IoT platforms. Additionally,
to understand the aforementioned platform behaviours, I
passively analyze the logs my honeypot generated based
on the traffic captured to further automatically adapt the
interactive-ness of my honeypot. I statistically analyzed the
open data published by Alrawi et al. [50], to carefully se-
lect the protocols that are implemented in my honeypot as
illustrated in Table 1.

3.5 Automatic App execution
Since my framework focuses on dynamic instrumentation,
apps must be executed to monitor their behaviours. To scale
testing beyond hundreds of app, manual interaction with
these apps can be tedious. Therefore, to automatically sim-
ulate user-behaviour for apps and to scale app testing in
my framework, I make use of Droidbot [46] - UI test input
generator for Android. However, Droidbot is designed to
work with Android devices and it doesn’t work well straight
of the box with Android TVs. Droidbot requires to parse
the manifest file to interact with the app and the manifest
files are different for Android TV apps. I tailor Droidbot
for Android TV with additional instrumentation to various
parsers within Droidbot (i.e., logs, manifest etc.). In my setup,
I configure droidbot to explore each app for 3 minutes and
use its breadth first search algorithm to improve the prob-
ability of triggering a sensitive behaviour during the app
exploration phase. My framework installs and explores each
app separately (i.e., installs an app, explores the app, capture
logs, and finally uninstalls the app). With this flow, I make
sure that there is no background app operations to minimize
the contamination from other apps. Once the exploration
completes, the custom tool build around Droidbot collects
logs (includes both network and runtime logs) from the in-
strumented Android devices and is stored for later analysis.
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3.6 Summary
Bringing all the aforementioned components together consti-
tutes the first version of my framework. All the smart home
devices available in my dataset (as described in section 4.1)
is connected to the access point where both encrypted and
unencrypted traffic is collected opportunistically. In-order to
empirically measure the capabilities of the proposed frame-
work, the instrumented Android TV executes apps based
on the heuristics discussed in the automatic app execution
section and the traffic is collected at the access point as well.
Finally, the honeypot connected to the access point sneak-
ily sits between the devices to capture smart home device
behaviour in a rich execution environment.

4 HARDWARE & DATASET
In this section, I provide a detailed overview of the devices
and IoT apps used for the evaluation of ImposTer framework.

4.1 Device dataset
In order to perform a realistic evaluation with ImposTer, I
selectively curated the list of smart home devices based on
the search results from e-commerce website such as Ama-
zon to find most popular IoT devices and selected the device
based on customer ratings. To capture device behaviours, my
framework comprises of 6 different IoT devices and platforms.
Table 2 describes the devices in my framework by category.
In the test-bed, in addition to the devices, my framework
contains, a Debian laptop, 2 Android phones and 1 IPhone.
The mobile phones connected to the framework are used to
control and interact with the IoT devices using their com-
panion apps while the laptop is used to control the whole
environment and automatically test smart TV apps.

Table 2: Categorized IoT devices in my dataset

Categories Device Platform

Smart TV Amazon Fire TV Fire OS
Instrumented Android TV Android

Home Assistant
Samsung SmartThings hub SmartThings

Amazon Echo dot Alexa
Google Nest hub Nest
Apple Homepod Homekit
Starling hub -

Home Appliance Amazon Smart plug Alexa

4.2 App collection
I implemented a crawler to collect Android TV APKs from
Google Play store. Unfortunately, crawling TV apps at scale
from the playstore is not straight forward since they do not

provide platform-specific (e.g.,TV,wear etc.) metadata. There-
fore, my crawler took a heuristic approach to detect potential
TV apps in the playstore. Once the APK is downloaded, I
verify if it is meant for a smart TV by parsing the manifest
to confirm the following: (1) It must publish a launcher TV
activity. (2) The APK must not broadcast unsupported hard-
ware such as touchscreen. (3) It can optionally add support
for the Leanback library as discussed in section 2.

Despite the fact that my dataset comprises 415 applications
for smart TV, I was unable to perform dynamic analysis on
5% of the apps since at least one of them failed to install or
crashed the smart TV when started. A subset of these apps
are popular apps with 1,000,000+ downloads in the playstore.

5 EMPIRICAL RESULTS
While the current implementation ImposTer is still incom-
plete, this section provides an overview of its potential to
study a wide range of IoT privacy risks automatically. I em-
pirically evaluate the effectiveness of ImposTer, using the
instrumented smart TV prototype with Android TV apps to
explore the following behaviors: (1) third-party SDKs; and
(2) access and transmissions of sensitive data across devices
and the cloud. The instrumentation and setup to accomplish
the evaluation has been discussed in section 3.

5.1 Third-party components
As discussed previously, developers tend to heavily rely on
third-party services (commonly known as SDKs) to speed
up their development process. Advertising and Tracking
services (ATS) are one of the most popular third party SDK
in Android ecosystem. Android developers rely on such SDKs
for monetization purposes [32].
Table 3 shows the Top-20 third party services found in

my Android TV app dataset. Analytical services such as
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Figure 3: Distribution of Advertising and tracking do-
mains with benign domains across smart TV apps
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Table 3: Comparison of top-20 third-party SDK and
ATS in apps from Libradar and Exodus respectively

Libradar Exodus

SDK name Category % of apps SDK name % of apps
Android Support v4 Development Aid 78% Firebase Analytics 59%
Google Mobile Services Development Aid 53.5% CrashLytics 51%
Glide Development Aid 33% Admob 46%
Android Support v7 Development Aid 24.25% Google Analytics 24.25%
Facebook Social Network 22.75% Facebook Login 20%
Google Gson Development Aid 17% Facebook Analytics 19.5%
Amazon In-App Purchasing Payment 16.5% Google Tag Manager 19.25%
Bolts Base Library Development Aid 16.5% Facebook Share 18.75%
Google Play App Market 11.25% Facebook Places 11.25%
OKHttp3.0 Development Aid 10.75% Demdex 10.75%
Firebase Development Aid 10.25% AppsFlyer 10.25%
Fasterxml Utility 9% ComScore 8.75%
Crashlytics Mobile Analytics 8.5% Nielsen 8.5%
Amazon Auth SDK Development Aid 8.25% Conviva 7.75%
Apache Common Development Aid 8% Branch 7.5%
Amazon AWS Development Aid 7.75% Braze / Appboy 7%
Google Ads Advertisement 6.5% Moat 7%
Github Development Aid 5.25% IAB Open Measurement 6.75%
ExoPlayer Development Aid 5.25% Segment 6%
butterknife UI Framework GUI Component 4.75% Unity3d Ads 5.75%
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Figure 4: Distribution of SDKs across smart TV apps

Firebase, Admob, Analytics owned by Google predominantly
exists at very large in the majority of the smart TV apps. In
addition to the ATS SDKs in the table, my dataset contained
ad libraries such as Tapjoy and Vungle. These are example
ad libraries who specialize in connected smart TV services.
Figure 4 illustrates the distribution of the SDKs in my dataset
(including ATS services). In my dataset, I find atleast 60% of
the app includes 5 ATS SDK, whereas in my dataset I found
117 unique ATS SDKs based on the Exodus results. Moreover,
to identify the distribution of Advertising and Tracking SDKs
across my dataset, I randomly hand-picked a list of 4 popular
mobile SDKs from the study conducted by Razaghpanah et
al. [32] to find that 35% of the TV apps in my dataset had
atleast 1 of these SDKs embedded in the app.

Executing our app dataset on the instrumented smart TV
generated 20KHTTP/S flows. Figure 3 shows the distribution
of unique domains (including ATS domains) contacted by
each app in my dataset. I used the data from the study carried

out by Razaghpanah et al. [32] to filter ATS domains in my
dataset to find that, there is atleast 10% of the apps that
frequently contact and unique ATS domains in my dataset.
Analyzing the traffic captured at both the network proxy as
well as from the instrumentation, I found a few interesting
cases:

• Obfuscated IP check: I found services, checking if
the IP address is being obfuscated by the user. This
could have legitimate purposes for example, fraud pre-
vention. However, an intrusive intend could be Geo-
location based tracking.

• isRooted & isDebuggable flags: These checks could
be utilized to model app behaviour during runtime
in-order to avoid scrutiny from security and privacy
researchers.

• Browser info (model, version, type): Could be utilized
for fingerprinting purposes.

I acknowledge that, these parameters seen in the traffic
could have legitimate reasons for their existence. However,
existence of these parameters in the traffic for smart TV at
homes is concerning, because many of the smart TVs in the
market are not instrumentable and lack debugging capabili-
ties. This however, invites our attention to model developer
behaviour in new smart home platforms. Smart home devices
contacting third-parties be by itself should raise concern
about the privacy implication of such behaviours.

5.2 PII dissemination
In this particular analysis, "PII dissemination" is the trans-
mission of any Personal Identifiable Information from the
smart TV device to any cloud endpoint. With static analysis I
extract an upper bound approximation of potential access to
permission-protected data. In Android ecosystem, sensitive
system resources that can potentially be a data source for
PII leaks are referred as dangerous permissions to denote
protection levels.

As depicted in Figure 5, the most requested dangerous per-
missions inmy dataset are related to storage, microphone and
location. Additionally, many of the permissions requested
by apps are not available in Android TV. This in-turn speaks
about the developer landscape of Android TV apps. Develop-
ers develop cross-platform apps without considering the pri-
vacy implication of such development process. Not only this
introduces over-privileged [35] apps in Android TV ecosys-
tem, but also translates the advertising and tracking ecosys-
tem to TV ecosystem. However, The high request rate of
dangerous permission does not imply that smart TV apps
are actually exposing sensitive data over the Internet. There-
fore, I compliment my static analysis findings with dynamic
analysis techniques as discussed in section 3.
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Figure 5: # of TV apps requesting dangerous permis-
sions

Henceforth, my network-level instrumentation enables
identifying PII values (such as advertising ID and serial num-
ber) through monitoring network traffic and analyzing the
logs there after where I search for common PII values in
the URIs. However, the number of PII exposure my analysis
estimates a lower bound of all the possible instances of per-
sonal data dissemination that might transpire in my smart
TV dataset. Because I cannot simulate every possible code-
path even when using a smart monkey and because I cannot
model every possible communication from other devices.

Table 4: Different type of personal information dis-
semination detected in logs generated bymy smart TV
instrumentation

Identifier type Description

Android ID Persistent ID created at Android setup
Serial number Persistent hardware/manufacturer ID
Device ID Persistent device ID
Advertising ID Resettable Advertising ID
Router SSID SSID of the access point device connected to
Country Persistent user location until device is moved

As portrayed in Table 4, my framework detect transmis-
sion of identifiers such as Android ID, Device ID etc.. Inspite,

Google’s recommends developers to use the Android Ad-
vertisement ID (AAID) as the only user identifier [8] since
it is resettable. Despite such regulations, I found that 62
(15.5%) apps shared non-resettable Device ID over the In-
ternet. Whereas 7 apps were found combining AAID with
Android ID within their request in-order to keep a persis-
tent user profile. However, combining the AAID with other
persistent identifiers such as serial number without explicit
consent from the user has inverse effects and is in violation
of Google’s Terms of Service [16].

The network-level instrumentation instigated the discov-
ery of these PII leaks within net-flows after intercepting
them through MITM techniques. However, monitoring PII
leaks of IoT devices which denies any instrumentation possi-
bilities is challenging since they converse through encrypted
channels.

6 DISCUSSION
For this study, I introduced 7 IoT devices to simulate a smart
home environment and to monitor their behaviour. Through-
out this study, these devices where sitting idle while con-
nected to the Internet through my intercepting access point.
My ImposTer prototype shows the potential of this ap-

proach to study smart devices. It opens new opportunities
to assess the limits of black-box testing on IoT products and
the possibility of creating new types of IoT fuzzing meth-
ods. My analysis shows potential privacy violations in the
form of persistent identifiers sent to third parties. Using the
honeypot, my framework ImposTer has found evidence of
cross-device scanning among devices in the network. Analyz-
ing the traffic captured from both the honeypot and as well as
from the access point reveals that, the devices in my test-bed
has been predominantly scanning the network using various
protocols and techniques. Samsung SmartThings and Google
Nest uses ARP scans to identify nearby devices. Occasionally,
I saw HTTP requests send from the Nest to my honeypot.
Similarly, Amazon echo scans and discovers devices using
UPnP protocol. However, scanning nearby devices in a smart
home ecosystem might have an adverse privacy effect as it
can be used to geo-locate users trough their WiFi AP but
also to infer the socio-economic level of the household (and
to discover vulnerabilities) by fingerprinting the types of
devices that they have deployed. However, I note that these
behaviour which ImposTer monitored may not necessarily
be of malicious or privacy-intrusive intents if they are exe-
cuted with informed user consent or for legit reasons needed
to offer the intended service.

6.1 Limitation and future work
Static and dynamic analysis challenges For the empir-
ical measurement conducted to evaluate my framework, I

9



employ both static and dynamic analysis techniques. I as-
sessed declared permissions, third-party libraries (including
Advertising and tracking libraries) and data sharing over
the Internet using this hybrid mechanism. However, I ac-
knowledge the limitation of the aforementioned techniques,
as they cannot guarantee a complete coverage and visibility
of an apps behaviour (code or the data flows):

• First, static analysis methods have high false positive
and false negative rates due to many factors such as
code obfuscation, dead code, etc.. Hence, I consider
the results obtained by static analysis as an upper-
bound estimation of the potential harmful. Therefore,
as discussed in the previous sections, I compliment
my static results with dynamic techniques in-order to
reduce the error rates.

• Second, both LibRadar and exodus use a pre-loaded
database to identify third-party libraries and trackers.
Therefore, this approach cannot detect new services
that are not present in this database.

• Third, my dynamic analysis visibility is not complete.
I need to incorporate additional instrumentation to
other Android APIs such as other network libraries
within AOSP to get more control over the custom
ecosystem I have build for smart home privacy as-
sessment as described below for example.

Network Monitoring ImposTer attempts to decrypt the
TLS traffic from the devices and apps at various vantage
points. However, the decryption fails in cases where apps or
devices circumvent TLS interception using techniques such
as certificate pinning [40, 52] as discussed earlier. During my
experiments, out of approximately 20,000 requests send from
my instrumented smart TV, 5.7% of them failed due to TLS
handshake failures, for which a reason can be certificate pin-
ning. Therefore, addressing TLS decryption failure to provide
better coverage would be a plan for the future. Additionally,
researchers have previously demonstrated security and pri-
vacy vulnerabilities in IoT protocols such as ZigBee [56] and
BLE [43]. My future work would also include adding support
for monitoring and intercepting these traffic as well. I also
plan to improve the capabilities of my honeypot to capture
and contextualize inter-device communication behaviours by
extracting the semantics of the communications and building
smart systems on top of that knowledge.
Device discovery My framework ImposTer showed evi-
dence of various device discovery mechanisms employed by
smart home devices. My future work would include under-
standing the privacy landscape of these discovery mecha-
nisms with improved fuzzing techniques in a customizable
honeypot in-order to capture and analyse requests.
Android proximity service Since Android 4.0, Android
framework includes a high-level API called Nearby [14].

This library exposes APIs such as NearbyConnection and
NearbyMessage to communicate with nearby Android or iOS
devices irrespective of whether they are connected in the
same network or not. Today, Google uses Nearby API in
their exposure notification library [22]. I believe that, with
minor configuration to my dynamic analysis scripts with
Frida, I will be able to monitor Nearby APIs to characterize
and understand PII violations while using this library.
Effects of countermeasures Analyzing the traffic gener-
ated by apps for the smart TV, I saw parameters such as
limit_ad_tracking in the smart TV traffic. These parameters
are meant to be selected by users to restrict tracking in their
device. My future work would include validating the effec-
tiveness of such countermeasures comparing with what apps
have in their privacy policies especially when they are in a
rich execution environment. This information can be utilized
to access purpose of the communications and whether the
data can be leaked for secondary advertising and tracking
activities beyond those required to offer the service.
Automatization and fuzzing The app automation using
Droidbot isn’t perfect and this limits the coverage of my
current framework. Many of the TV apps requires you to
sign in with an account to access their full features. I plan
to customize droidbot to bypass this limitation by signing
up whenever required automatically using custom scripts
and pre-created accounts. Additionally, I run each app for
only 3 minutes. However, it would only be ideal to choose
this timing based on a trail and error. My future work would
include a testing phase for this as well. In addition, from the
empirical results from the honeypot showcases the require-
ment for a smarter honeypot capable of crafting artificial
interaction within the home network. This would require
network level fuzzing to generate appropriate requests that
IoT devices would respond to.

7 CONCLUSION
This thesis presents ImposTer, a unified privacy analysis
framework for IoT platforms. By prototyping it and testing in
real-world setups, I demonstrate the feasibility of character-
izing smart home devices and their corresponding platforms.
ImposTer stands apart from prior research due to its ability
to monitor and characterize various smart home device and
platform behaviours irrespective of the vendor. ImposTer
empirically shows that prior black-box testing mechanism
do not suffice to study the privacy and security risks of smart
home ecosystem, automatically and exhaustively. ImposTer
opens the ground for a new generation of black-box testing
mechanisms for IoT devices with enhanced accuracy and cov-
erage by enabling simulated but realistic IoT environments
and device communications.
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